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Abstract
We present a new method to study the eigenvalues and eigenfunctions of
anharmonic oscillators. It involves a new class of Bogoliubov transformations
and leads to the introduction of k-photon coherent states. We consider the
Hamiltonians for the simple harmonic and anharmonic oscillators as the two
generators of a Lie algebra, whose other generators may be found exactly, or
up to any desired order of the perturbation parameter involved. An element
of this Lie group, turning out to be the multi-photon operator, transforms the
anharmonic Hamiltonian to the harmonic one, thus facilitating the calculation
of the eigenvalues and eigenfunctions of the former. The transformation of
the ordinary annihilation and creation operators leads to generalized ones,
corresponding to generalized oscillation modes, and also helps us out to
introduce multi-photon coherent states. We specifically consider four-photon
coherent states in detail and study time dependent position and momentum
uncertainties in these states.

PACS numbers: 42.50.Dv, 03.65.Ge, 02.20.Sv

1. Introduction

Simple harmonic oscillator is an idealized model to describe many phenomena in physics
and chemistry. Anharmonic oscillator is a deviation from this idealized model to a
realistic one. Rayleigh–Schrödinger perturbation theory has been widely used, providing
the energy of an anharmonic oscillator as a formal power series of the perturbation parameter
involved [1–4]. However, the power series diverges even for small coupling constants; thus,
appropriate techniques must be applied to alleviate this problem [5–12]. Several alternative
approaches have also been developed; among them, a Lie algebraic method using canonical
transformations [13], multiple-scale method [14–16], operator method [17], quasilinearization
method [18, 19], a variational method based on the squeezed states [20, 21] and Naundorf
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method [22] are mentioned. We also refer the reader to the book by Fernandez and Castro for
a detailed exposition of algebraic methods [23].

We also note that nonlinear optical processes occur, when fields interact with the kind
of matter that is characterized by nonlinear properties and can be described by anharmonic
oscillators [24, 25]. Such processes correspond to the production of two- or k-photon coherent
states [26, 27]. One expects to generalize the squeezed states or two-photon coherent states to
k-photon ones, by means of straightforward generalization of the two-photon unitary operator;
however, this task encounters divergence difficulties [28], which may partially be overcome
by using the Padé approximation techniques [29]. An approach to this generalization, based
on the Brandt–Greenberg multi-photon operators, has also been used [30–33]. Furthermore,
we mention a recent method, based on the generalization of the Bogoliubov transformations
[34, 35].

In this work, we present a new simple method to find the eigenvalues of anharmonic
oscillators. It also bridges between the notion of the latter and the generalized squeezing. We
use Lie algebraic methods to relate the Hamiltonian of an anharmonic oscillator to that of a
harmonic one, in a perturbation sense. This is achieved via a canonical transformation, which
is unique to the structure of the specific Hamiltonian under study. We introduce our method
in section 2, where we apply it to two prototype trivial examples: a harmonic oscillator with
a linear perturbation term and one with a quadratic perturbation term that just brings about a
frequency shift.

In section 3, a unitary transformation is found that relates the Hamiltonian of a quartic
anharmonic oscillator to that of a harmonic one, and it is realized as a generalized squeezing
operator. The eigenvalues of the anharmonic oscillator are evaluated up to the fourth order in
the perturbation parameter, and the results are compared with those obtained from Rayleigh–
Schrödinger perturbation theory. Section 4 will be devoted to the study of four-photon coherent
states that emerge from our method. Time dependent position and momentum uncertainties are
also obtained in these states and their oscillating nature is studied. In section 5, we study the
quartic-quadratic anharmonic oscillator and introduce another type of four-photon coherent
states. Finally, we deal with the discussion and conclusions in section 6.

2. The Lie algebra method

The anharmonic oscillator, described by the Hamiltonian

Hn = H0 + λxn = p2

2
+

x2

2
+ λxn, (1)

is a deviation from the harmonic one described by the Hamiltonian H0. If N Hermitian
generators Li , including L1 = H0 and L2 = Hn, satisfying

[Li, Lj ] =
∑

k

cijkLk, (2)

form a closed commutator algebra, the operators Li specify a Lie group, whose generators
they are. The elements of this group are given by

U = exp

(
−i

N∑
i=1

αiLi

)
, (3)

where αi’s are real parameters. Now an element of the group may be found that transforms H0

to Hn. This coming about, the eigenvalues and the eigenfunctions of the anharmonic oscillator
can be obtained in terms of those of a harmonic one in a simple manner.
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Now, let us assume n = 1 in (1) to write

H1 = p2

2
+

x2

2
+ λx = a†a +

1

2
+ λ

(
a + a†
√

2

)
, (4)

which may be considered as a harmonic oscillator in an external electric field. a and
a† are the ordinary annihilation and creation operators. Considering the commutator
[H0,H1] = λ(a† − a)/

√
2, we realize that the operators H0,H1, i(a† − a) and the identity

operator I form a closed commutator algebra and are the generators of a Lie group. The
Glauber operator U1 = exp(αa† − α∗a), with α assumed real in this section, is an element of
this group. The transformation of H0 to H1 is carried out in the following manner

H1 = U
†
1H0U1 − λ2

2
, (5)

where α has been replaced by λ/
√

2 in U1. Using (5), we find

H1
[
U

†
1 |n〉a

] =
[(

n +
1

2

)
− λ2

2

] [
U

†
1 |n〉a

]
,

where {|n〉a} are a-mode number states; meaning that the eigenvalues of H1 are given by

En =
(

n +
1

2

)
− λ2

2
, (6)

and the eigenfunctions, called the displaced number states [36] are expressed by

U
†
1 |n〉a = e

λ√
2
(a−a†)|n〉a. (7)

Now, we consider our second prototype trivial example. The Hamiltonian of a shifted-
frequency harmonic oscillator, the case n = 2 in (1), is given by

H2 = p2

2
+

x2

2
+ λx2 = a†a +

1

2
+ λ

(
a + a†
√

2

)2

. (8)

In this case, we have [H0,H2] = λ(a†2 − a2); therefore, the Hermitian operators
H0,H2, i(a†2 − a2) and I, form a closed commutator algebra and are the generators of a
Lie group. The squeezing operator U2 = exp(βa†2 − β∗a2), with β assumed real, is an
element of this group. The transformation of the fundamental mode operators a and a† into
the new ones, b and b† under U2, is carried out by the following Bogoliubov transformations:

b = U
†
2aU2 = µa + νa†, b† = U

†
2a

†U2 = µa† + νa,

where µ = cosh(2β) and ν = sinh(2β). As µ2 − ν2 = 1, we have also [b, b†] = 1. The
transformed Hamiltonian under U2 is given by

H2 =
√

1 + 2λU
†
2H0U2 =

√
1 + 2λ

(
b†b + 1

2

)
, (9)

where λ = 2µν/(µ − ν)2 has been assumed. Using (9), we find

H2
[
U

†
2 |n〉a

] =
√

1 + 2λ
(
n + 1

2

)[
U

†
2 |n〉a

]
,

or

H2|n〉b =
√

1 + 2λ
(
n + 1

2

)|n〉b,
implying that eigenfunctions of the shifted-frequency harmonic oscillator, the b-mode number
states, or squeezed number states [36], are given by |n〉b = U

†
2 |n〉a , and the corresponding

energies by
√

1 + 2λ
(
n + 1

2

)
.
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3. Quartic anharmonic oscillator

Now we consider the quartic anharmonic oscillator. Its Hamiltonian in terms of the
fundamental mode operators a and a†, may be given by

H4 = a†a +
1

2
+ λ

(
a + a†
√

2

)4

. (10)

We can show that

[H0,H4] = −iL3 − 3iL4 − 2iL5, (11)

where

L3 = iλ(a†4 − a4), L4 = iλ(a†2 − a2), L5 = iλ(a†3a − a†a3).

Inspecting the mutual commutators between the operators H0,H4, L3, L4 and L5, we are
finally led to prove that H0,H4, iλ(a†4 − a4), iλ(a†2 − a2), iλ(a†3a − a†a3), λ(a†4 + a4),

λ(a†2 + a2), λ(a†3a + a†a3) and I form a closed commutator algebra up to the first order if
the perturbation parameter λ is small; therefore, they are the generators of a Lie group, up to
that order. We now focus on the following element of this group, known as the four-photon
operator [28]

U4 = exp[Aλ(a†4 − a4) + Bλ(a†2 − a2) + Cλ(a†3a − a†a3)], (12)

where A,B and C are real parameters. This operator transforms the fundamental mode
operators, a and a† to the new ones c and c†. Using Baker–Campbell–Hausdorff relation up
to the first order in the parameter λ, we have

c = U
†
4aU4

= a + λ(4Aa†3 + 2Ba† + 3Ca†2a − Ca3), (13)

c† = U
†
4a

†U4

= a† + λ(4Aa3 + 2Ba + 3Ca†a2 − Ca†3). (14)

It is worth noting that c and c† also obey the canonical commutation relation [c, c†] = 1, up
to the first order in the parameter λ; therefore, we have introduced a new class of Bogoliubov
transformations by (13) and (14). Assuming A = 1/16, B = 3/4 and C = 1/2, the four-
photon operator transforms H0 to H4, up to the first order in the parameter λ, as follows

U
†
4H0U4 = c†c +

1

2
= H4 − 3λ

2

(
N2

a + Na

) − 3λ

4
,

H0 = U4H4U
†
4 − 3λ

2
Na(Na + 1) − 3λ

4
,

(15)

where Na = a†a is the normal number operator. Using (15), we find

H4
[
U

†
4 |n〉a

] =
[
n +

1

2
+

3λ

4
+

3λ

2
n(n + 1)

] [
U

†
4 |n〉a

]
.

Thus, the eigenstates of the quartic anharmonic oscillator, our c-mode number states, are given
by

|n〉c ≡ U
†
4 |n〉a,

|n〉c = e−λ[ 1
16 (a†4−a4)+ 3

4 (a†2−a2)+ 1
2 (a†3a−a†a3)]|n〉a.

(16)

This result is formally correct up to the order λ and corresponds to the first-order wavefunction
calculations in Rayleigh–Schrödinger and multiple-scale perturbation theories [15, 37]. The
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first-order perturbed energies are expressed by

En = n +
1

2
+

3λ

4
+

3λ

2
n(n + 1),

which are also in complete agreement with those obtained, using the first-order Rayleigh–
Schrödinger perturbation theory [37].

Furthermore, although (16) is formally derived up to the first order in the parameter λ,
we can derive the energy eigenvalues, using these states, up to higher orders of accuracies. To
show this, we calculate the expectation values of H4 in the c-mode number state basis, up to
the fourth order and compare the energies obtained, with the standard results. We find

E0 = 0.5 + 0.75λ − 2.625λ2 + 20.8125λ3 − 104.098λ4 + · · · , (17)

E1 = 1.5 + 3.75λ − 20.625λ2 + 244.688λ3 − 1628.96λ4 + · · · , (18)

E2 = 2.5 + 9.75λ − 76.875λ2 + 1254.94λ3 − 10791λ4 + · · · , (19)

E3 = 3.5 + 18.75λ − 196.875λ2 + 4176.56λ3 − 44972.4λ4 + · · · . (20)

Bender and Wu also give the following perturbation series, for the ground-state energy E0,B ,
of the quartic anharmonic oscillator which we write down up to the fourth order as follows:
[1]

E0,B = 0.5 + 0.75λ − 2.625λ2 + 20.8125λ3 − 241.289λ4 + · · · . (21)

We note that the result (17) agrees with (21), up to the third order in the parameter λ. We
have also found out that our results (17) through (20) are compatible with those obtained from
multiple-scale method, up to the third order in the perturbation parameter [16]. Moreover,
table 1 in [17] displays the energy levels derived from the operator method and also from the
Rayleigh–Schrödinger perturbation theory which are in good agreement with ours as well.

The agreements we have already observed should not surprise the reader; this situation
is similar to the one we encounter in Rayleigh–Schrödinger perturbation theory. That is,
calculation of the (n + 1) th-order energy shift requires only the knowledge of the nth-order
wavefunction. However, if all the perturbed wavefunctions to the order n are known, all
the energy eigenvalues up to the order (2n + 1) can be obtained. Moreover, both series are
divergent, even for small values of λ; specifically, we observe that 〈0|U4|0〉 is divergent [28],
and thus responsible for the divergence of (17). Therefore, one has to truncate the series to
get any physical result. Moreover, the accuracy that can be achieved depends on the order of
truncation and the magnitude of the coupling constant λ [12]. For example, using (17), we
calculate the ground-state energy up to the fourth order; for λ = 0.1 we find E0 = 0.5591527.
Comparing this result with the exact value E0 = 0.559146327183519576 obtained by Vinette
and Čı́žek [38], we find that the error is about 0.001%.

4. Four-photon coherent states

Ordinary coherent states, or the so-called one-photon coherent states, are eigenstates of the
ordinary annihilation operator a

a|α〉 = α|α〉, |α〉 = U1(α)|0〉a = eαa†−α∗a|0〉a, (22)

entailing a Poisson distribution in terms of the ordinary number states.
Defining b-mode vacuum state |0〉b, by the relation b|0〉b = 0, we may construct the

so-called b-mode number states by the repeated application of b-mode creation operator b† on
the b-mode vacuum state as follows

|n〉b = b†n
√

n!
|0〉b, |n〉b ≡ U

†
2 |n〉a. (23)

5
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Eigenstates of the operator b, |β〉 are called the b-mode coherent states, two-photon coherent
states, or the familiar squeezed states

b|β〉 = β|β〉, |β〉 = U
†
2U1(β)|0〉a = eβb†−β∗b|0〉b. (24)

In a similar way, we may introduce the c-mode number states, by the relation

|n〉c = c†n√
n!

|0〉c, |n〉c ≡ U
†
4 |n〉a, (25)

where |0〉c is the c-mode vacuum state and is defined by c|0〉c = 0 . The four-photon or
c-mode coherent states, or the generalized squeezed states |γ 〉, are defined as the eigenstates
of the c-mode annihilation operator as follows

c|γ 〉 = γ |γ 〉, (26)

where γ is a complex number. Using (13), we have

U
†
4aU4|γ 〉 = γ |γ 〉, a(U4|γ 〉) = γ (U4|γ 〉).

Thus, U4|γ 〉 is an a-mode coherent state, and we have

U4|γ 〉 = U1(γ )|0〉a. (27)

Therefore, the four-photon coherent states are given by

|γ 〉 = U
†
4(λ)U1(γ )|0〉a = eγ c†−γ ∗c|0〉c. (28)

Using this result, we finally write down the four-photon coherent state |γ 〉, up to the first order
in the perturbation parameter λ, in terms of the ordinary number states, as follows

|γ 〉 = e−|γ |2/2
∑
n=0

[
γ n

√
n!

+ λ

(
− γ n−4

√
n!

16(n − 4)!
θ(n − 4) +

γ n+4

16
√

n!
− 3γ n−2

√
n!

4(n − 2)!
θ(n − 2)

+
3γ n+2

4
√

n!
− γ n−2

√
n!

2(n − 3)!
θ(n − 3) +

γ n+2n

2
√

n!
θ(n − 1)

)]
|n〉a, (29)

where θ(x) is equal to 1 for x � 0 and equal to 0 for x < 0.
Now we embark upon the derivation of uncertainties. The time dependent position

operator for the quartic anharmonic oscillator, up to the first order in the parameter λ is given
by [39]

x(t) = 1√
2
{(cos t − i sin t)a(0) − λ[A1a(0) + A2a

3(0) + A∗
1a

†2(0)a(0)]} + h.c., (30)

where h.c. stands for the Hermitian conjugate of the other terms, and the parameters A1 and
A2 are defined as follows

A1 = 3
4 [t sin t + i(t cos t − sin t)], A2 = 1

16 [(cos t − cos 3t) + i(sin 3t − 3 sin t)].

We also take the time derivative of (30) to find the momentum operator

p(t) = − 1√
2
{(sin t + i cos t)a(0) + λ[Ȧ1a(0) + Ȧ2a

3(0) + Ȧ∗
1a

†2(0)a(0)]} + h.c., (31)

where Ȧ1 and Ȧ2 are time derivatives of A1 and A2.
It is straightforward to obtain the position and momentum uncertainties for the four-photon

coherent state |γ 〉, by means of (30) and (31) as follows:

�2x(t) = 1

2
− λ

2

{(
3

2
+ 3|γ |2

)
sin2 t + 2Re

[(
3

4
γ 2 + 3|γ |2 +

3

2

)
e2it

+ A1γ
2e−it + 3A2γ

2eit

]}
, (32)
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Figure 1. Plot of the x̂-uncertainty (solid line) and p̂-uncertainty (dashed line) for four-photon
coherent state versus time: (a) λ = 0.01, γ = 1; (b) λ = 0.01 and γ = 1 + i.

�2p(t) = 1

2
+

λ

2

{(
3

2
+ 3|γ |2

)
sin2 t + 2Re

[(
3

4
γ 2 + 3|γ |2 +

3

2

)
e2it

+ iȦ1γ
2e−it − 3iȦ2γ

2eit

]}
, (33)

where all the expressions of order two and higher in terms of λ are neglected. In the absence
of the quartic term (λ = 0), the uncertainties are equal to 1

2 ; just as it is the case for a coherent
state or a vacuum number state.

The position and the momentum uncertainties have a simple oscillating behavior in time
around 1

2 , for the c-mode vacuum state (γ = 0). The values change in the range 1
2 − 3λ

2 and
1
2 + 3λ

4 for position and in the range 1
2 − 3λ

4 and 1
2 + 3λ

2 for momentum. The uncertainty product
is 1

4 , up to the first order; implying that the c-mode vacuum state is a minimum uncertainty
state, up to the first order in λ.

In the general case, the product of uncertainties (32) and (33) reduces to 1
4 , up to the first

order in λ, at t → 0 limit. Thus, we conclude that the four-photon coherent state (29) is also
a minimum uncertainty state at t = 0. As time passes, one of the uncertainties dips well more
and more below the value 1

2 in successive periods, thus revealing the squeezing properties
of such states. We have illustrated the uncertainties of x̂ and p̂ versus time in figure 1.
It is observed that these quantities oscillate in opposite directions and their overall range of
variation increases with time.

5. Quadratic-quartic anharmonic oscillator

We now consider the quadratic-quartic anharmonic oscillator described by the Hamiltonian

Hq = p2

2
+ ω2x2 + λx4. (34)

Using (9) and (15), we can transform H0 to Hq , up to the first order, by implementing the
unitary transformation Q = U4(	)U2(β), as follows

Q†H0Q = 1√
2ω

Hq − 3λ

4
√

2ω3
U

†
2Na(Na + 1)U2 − 3λ

8
√

2ω3
,

H0 = 1√
2ω

QHqQ
† − 3λ

4
√

2ω3
Na(Na + 1) − 3λ

8
√

2ω3
, (35)

7
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where β = ln(2ω2)/8 and 	 = λ/(2
√

2ω3) has been assumed. In view of (35), we have

Hq[Q†|n〉a] =
√

2ω

{
n +

1

2
+

3λ

4
√

2ω3

[
n(n + 1) +

1

2

]}
[Q†|n〉a],

implying that the eigenstates of Hq are expressed by Q†|n〉a = U
†
2(β)U

†
4(	)|n〉a and its energy

levels by

En =
√

2ω

{
n +

1

2
+

3λ

4
√

2ω3

[
n(n + 1) +

1

2

]}
. (36)

To check the accuracy of the last result, we consider the first two energy levels, E0 and
E1 as examples; for λ = 0.01 and ω2 = 2, (36) yields E0 = 1.001 875 and E1 = 3.009 375.
Using the relatively accurate field theoretical method that we have developed in [20], we have
obtained the values 1.001 867 and 3.009 311 for the same quantities respectively, showing that
the discrepancies are less than 0.001% .

Now let us consider the d-mode annihilation and creation operators defined by the
following transformations:

d = Q†aQ, d† = Q†a†Q.

These lead to

d|η〉 = η|η〉, |η〉 = eηd†−η∗d |0〉d , (37)

where |0〉d is the d-mode vacuum state. We also have

Q†aQ|η〉 = η|η〉, a(Q|η〉) = η(Q|η〉).
Thus the states Q|η〉 are a-mode coherent states and we can write

Q|η〉 = U1(η)|0〉a. (38)

Therefore we have

|η〉 = Q†U1|0〉a = U
†
2U

†
4U1|0〉a. (39)

States |η〉, as expressed by (37) and (39) are another type of multi-photon coherent states.

6. Discussion

We have introduced a new and concise method to study the anharmonic oscillators, which
also leads to the introduction of generalized squeezed states. The method is based on the
construction of a Lie group, whose generators include H0 and Hn. The generator of the
group, H0 may be transformed to the generator Hn by a unitary transformation, endowed by
an element of the group. If a closed commutator algebra is formed exactly, the method can
be used to obtain exact eigenvalues and eigenfunctions of Hn. However, the commutator
algebra is generally obeyed up to some order of the parameter λ, thus the eigenvalues and
eigenfunctions of Hn are found approximately, up to that order. Of course, if one extends
the method to higher orders, the number of the generators increases and one has to perform
more and more algebraic calculations, as happens in the case of any higher order perturbation
theory. In the cases of H1 and H2, the familiar Glauber and squeezed operators, being canonical
transformations, emerge respectively; while in the case of H4, the four-photon operators are
generated. The transformation of the annihilation operator a, under the squeezed operator U2,
leads to the Bogoliubov transformations and the associated squeezed states. Keeping terms up

8



J. Phys. A: Math. Theor. 41 (2008) 304015 D Afshar and M Jafarpour

to the first order, the transformation of the ordinary annihilation operator under four-photon
operator, leads to a new class of Bogoliubov transformations and the associated four-photon
coherent states. While Na = a†a represents the number of ordinary photons, the transformed
operators Nb = b†b and Nc = c†c represent the shifted frequency number operator and the
quasi number operator, respectively. The effect of Nc = c†c on the quasi number states |n〉c
is similar to that of the ordinary number operator Na on the normal number states |n〉a . The
four-photon coherent state is a Poisson distribution of quasi number states, as the coherent
states and squeezed states are the Poisson distribution of ordinary and squeezed number states,
respectively. The uncertainties for the four-photon coherent state, |γ 〉, oscillate around 1

2 in
time similarly to the squeezed states, but the overall range of their variation grows with time.
We also observed that U

†
2U

†
4 |n〉a is an eigenstate of the Hamiltonian for the quadratic-quartic

anharmonic oscillator and U
†
2U

†
4U1|0〉a represents another type of four-photon coherent state.

Finally, one can generalize the procedure to six photon coherent states via sextic
anharmonic oscillator, eight photon coherent states via octic anharmonic oscillator and so
on, in a similar manner.
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[35] Wu Y and Côté R 2002 Phys. Rev. A 66 025801
[36] Nieto M M 1997 Phys. Lett. A 229 135–43
[37] McRae S M and Vrscay E R 1997 J. Math. Phys. 38 2899–921
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